
Acid-Base Balance

Outline

- р H-H equation
- p Interpretation
- p Sample collection & pre analytical errors
- p Respiratory Acidosis
- p Respiratory Alkalosis
- p Metabolic Acidosis
- p Metabolic Alkalosis
- p Mixed disturbances

Henderson Hasselbalch equation

$$H^+ + HCO_3^- \longleftrightarrow H_2CO_3 \longleftrightarrow H_2O + CO_2$$

pH =
$$6.1 + log_{10} [HCO_3]$$

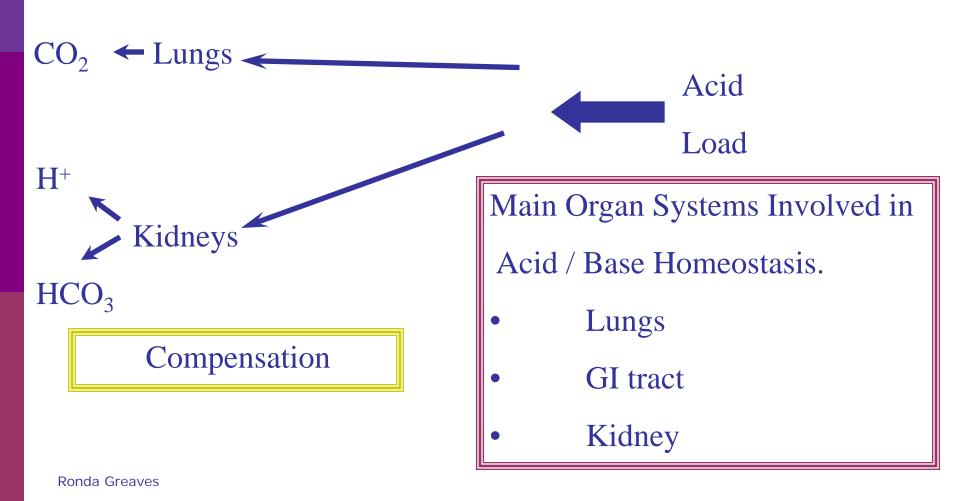
pCO₂ x 0.23

Relationship of pH and H⁺

pH

$$[H^+]$$

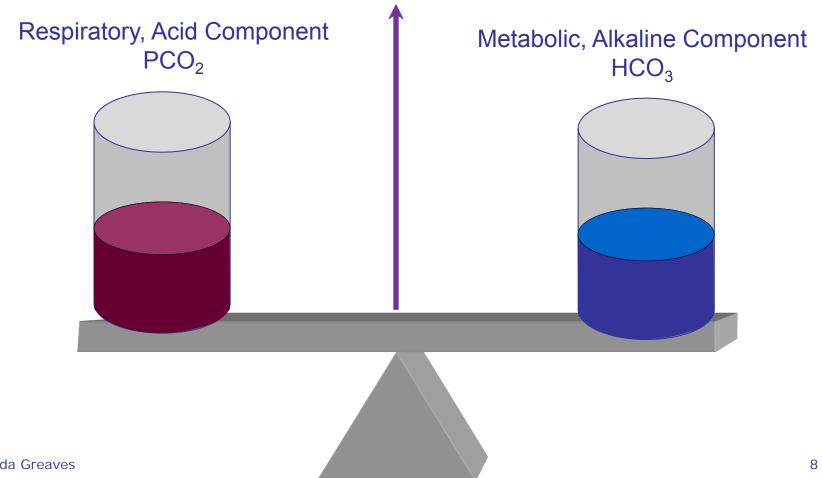
 $pH = -log_{10} [H+]$


```
pH 6.0 [H+] = 1000 nmol/L
pH 7.0 [H+] = 100 nmol/L
pH 7.35 [H+] = 45 nmol/L
pH 7.45 [H+] = 35 nmol/L
pH 8.0 [H+] = 10 nmol/L
```

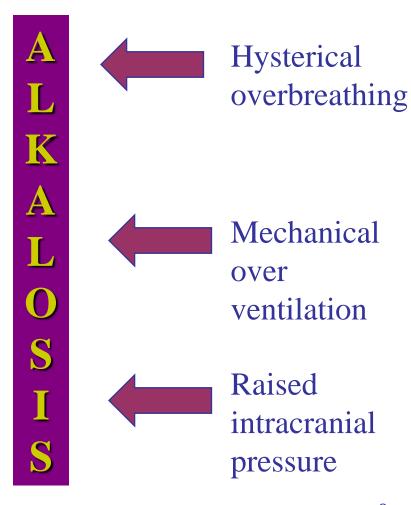
Main Buffers

Buffer	Equation	RBC	[Conc]	% Total
Hb	$H^+ + Hb- \longrightarrow HHb$	40	53 mmol/L	
HCO3	$CO_2 + H2O \longrightarrow H_2CO3 \longrightarrow H^+ + HCO_3$	1	25 mmol/L	60
PO4	$H_2PO_4 \longrightarrow H^+ + HPO4$	0.3	1.0 mmol/L	Low
Protein	$H^+ + Pr- \longrightarrow HPr$	8	7.7 mmol/L	Low

RBC = relative buffering capacity


What happens when we get an increased acid load?

Interpretation

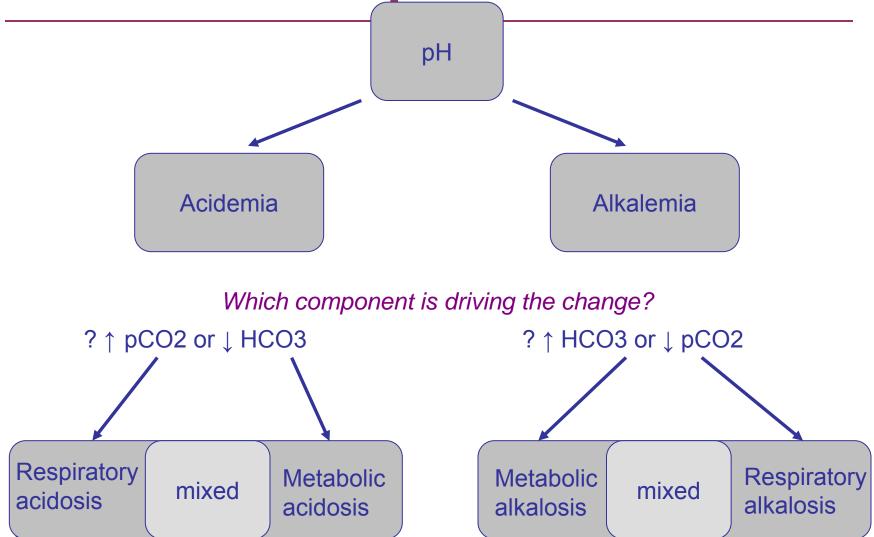

pH μ [HCO₃-]

The Acidosis Balance Alkalosis

Respiratory

Choking Broncho pneumonia **COAD**

Metabolic


Impaired H ⁺ excretion Increase H + production or ingestion Loss of HCO₃-

Loss of H + in vomit Alkali Ingestion Potassium deficiency

COMPENSATION LIMITS

- Primary disorders are corrected by compensation using the non-disordered component
- p Renal compensation for abnormal pCO_2 :
 - n HCO_3^- can fall to 10 if pCO_2 low
 - n HCO_3^- can rise to 45 if pCO_2 high
 - n max compensation 2-4 days
- p Respiratory compensation for abnormal HCO₃⁻:
 - n pCO_2 can fall to 10 if HCO_3 low
 - n pCO₂ can rise to 60 if HCO₃- high
 - n max compensation 12-24 hours

Interpretation

Case Study 1: Normal

рН	7.40	(7.35 - 7.45)	
pCO ₂	40	(35 - 45)	mmHg
pO_2	90	(75 - 100)	mmHg
HCO ₃	25	(21 - 30)	mmol/L
Lactate	1.0	(0.2 - 1.8)	mmol/L
Ketones	Neg		
Glucose	5.0	(3.6 - 7.7)	mmol/L
Creatinine	0.09	(0.07 - 0.11)	mmol/L
Urea	5.0	(2.5 - 8.3)	mmol/L

Sample Collection & Pre analytical errors

Pre analysis!

- p Transport on ice
- p Analyse stat (<15 min)
- p Avoid air bubbles

- n Delayed analysis
- n Choice of collection device
- n Air in syringe
- n Air bubbles on electrode

Case Study 2: Collection tube

- p 16 month old boy
- p ICU
- p Previous suspicious results ??lab error
- p Blood gas collected
 - n Two samples collected from arterial line
 - n 1. Capillary tube
 - n 2. Blood gas syringe with liquid heparin

Case Study 2: Collection tube

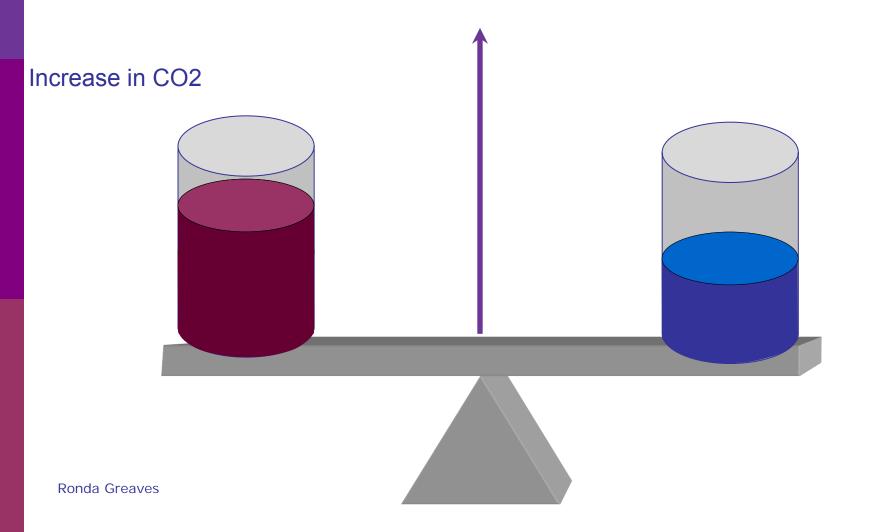
	Cap tube – analyser 1	Syringe – analyser 1	Syringe – analyser 2
pH (7.35-7.45)	7.49	7.41	7.41
pCO2 (35-45)	29	24	22.8
pO2 (80-100)	97	97	104.5
HCO3-	22.1	15.2	14.0
hct	36	21	
Ica++	0.79	<0.10	
Na+	135	137	
K+	2.6	1.3	
lactate	1.6	1.0	

Respiratory Acidosis

pLung disease

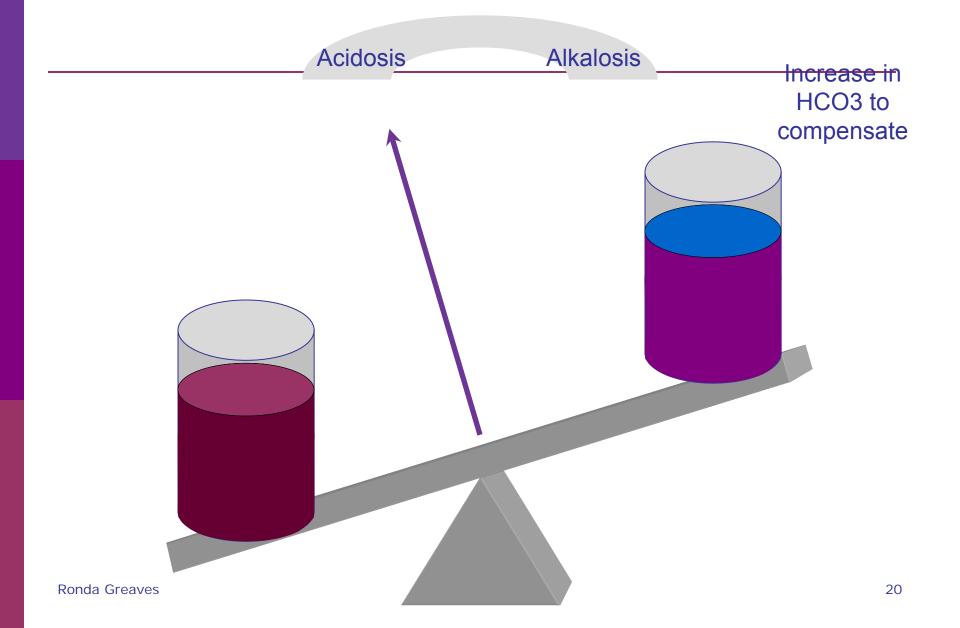
e.g. fibrosis, oedema, tumours, bronchitis, severe asthma, pulmonary embolism.

p**Mechanical**

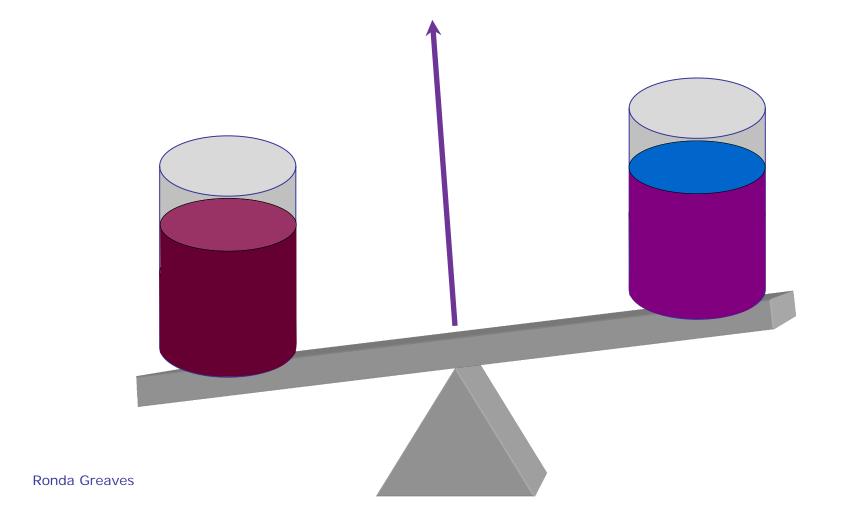

e.g. myopathies, trauma, pleural effusions, pneumothorax

pNeurological

p e.g. CNS depression (e.g. drugs) CNS disease


Respiratory Acidosis

Acidosis Alkalosis


19

Respiratory Acidosis

1° Respiratory Acidosis compensated by 2° Metabolic Alkalosis

Acidosis Alkalosis

21

Case Study 3: 59 year old male with emphasema

рН	7.36		(7.35-7.45)
H ⁺	43	nmol/L	(35-45)
PCO ₂	63	mm Hg	(35-45)
PO_2	52	mm Hg	(80.110)
HCO ₃	35	mmol/L	(23-33)

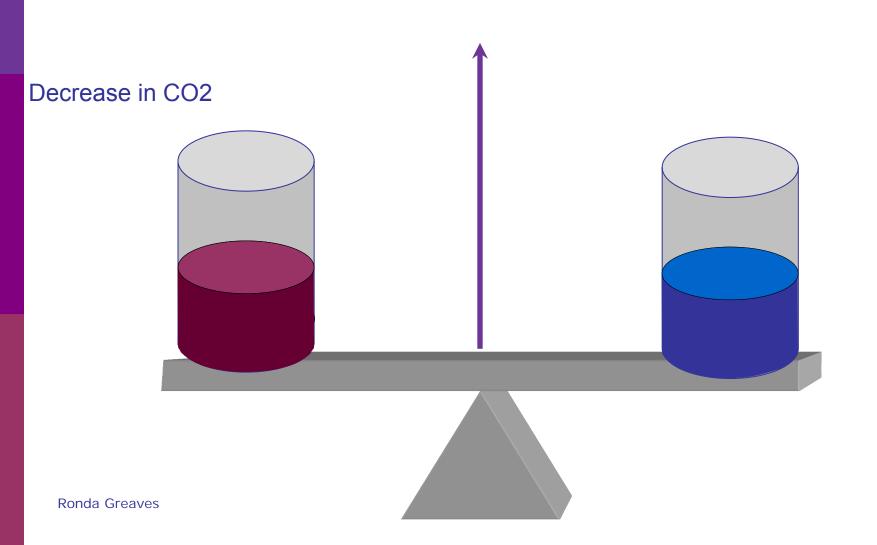
Case Study 4: Infant Respiratory Distress in a newborn (Twin 1)

	Day 3 0500	Day 3 1345	Day 4 0220	Day 4 0800	RR
рН	7.36	7.29	7.25	7.21	7.32-7.46
pCO ₂	36	49	54	64	31-42 mmHg
pO ₂	38	45	50	44	55-105 mmHg
ABIC	20	23	23	25	20-26mmol/L
BE	-5	-4	-5	-4	-5-+5mmol/L

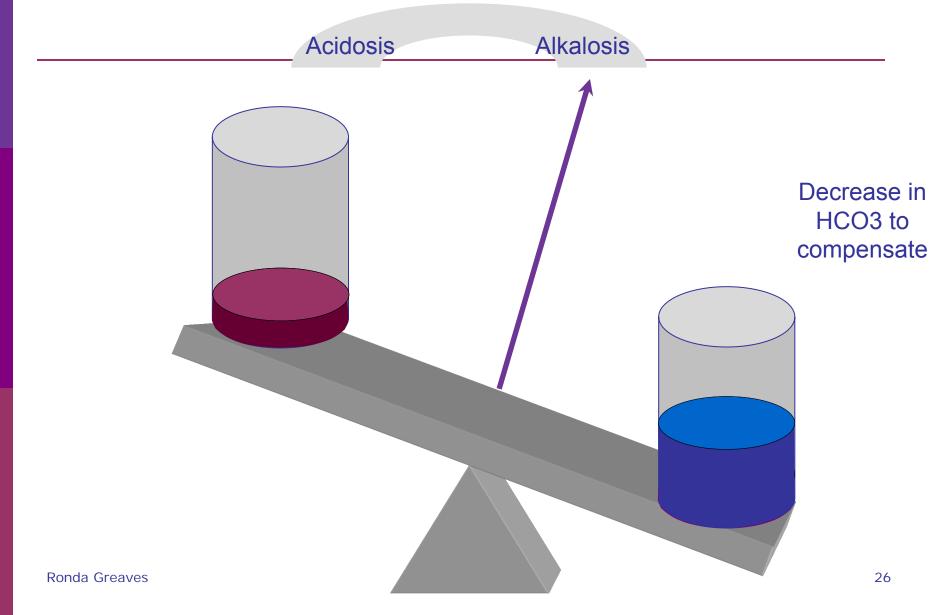
Is there compensation?

Respiratory Alkalosis

p**Hypoxia**


Since oxygen diffuses less easily across the lungs than carbon dioxide, hyperventilation due to hypoxia can reduce pCO2

p**Hyperventilation**


p e.g. anxiety/pain, CNS stimulation (e.g. salicylate OD)

Respiratory Alkalosis

Acidosis Alkalosis

Respiratory Alkalosis

1° Respiratory Alkalosis compensated by 2° Metabolic Acidosis

Acidosis Alkalosis

27

Case Study 5: 2 year old screaming during an arterial stab

рН	7.47	(7.35 - 7.45)	
pCO_2	30	(35 - 45)	mmHg
pO_2	99	(75 - 100)	mmHg
HCO_3	28	(21 - 30)	mmol/L
Lactate	1.0	(0.2 - 1.8)	mmol/L
Ketones	Neg		
Glucose	5.0	(3.6 - 7.7)	mmol/L
Creatinine	0.04	(0.03 - 0.06)	mmol/L
Urea	5.0	(2.5 - 8.3)	mmol/L

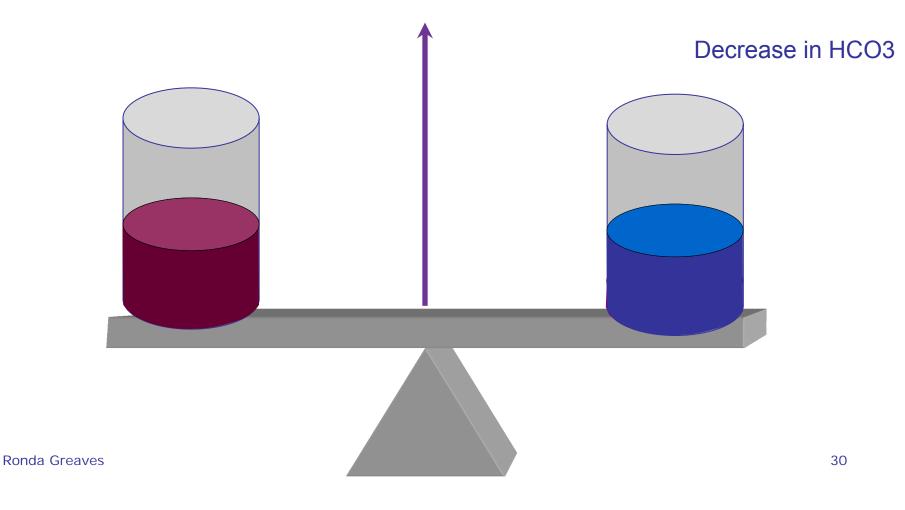
Metabolic Acidosis

pIncreased rate of H+ production

n e.g diabetic ketoacidosis, lactic acidosis due to hypoxia

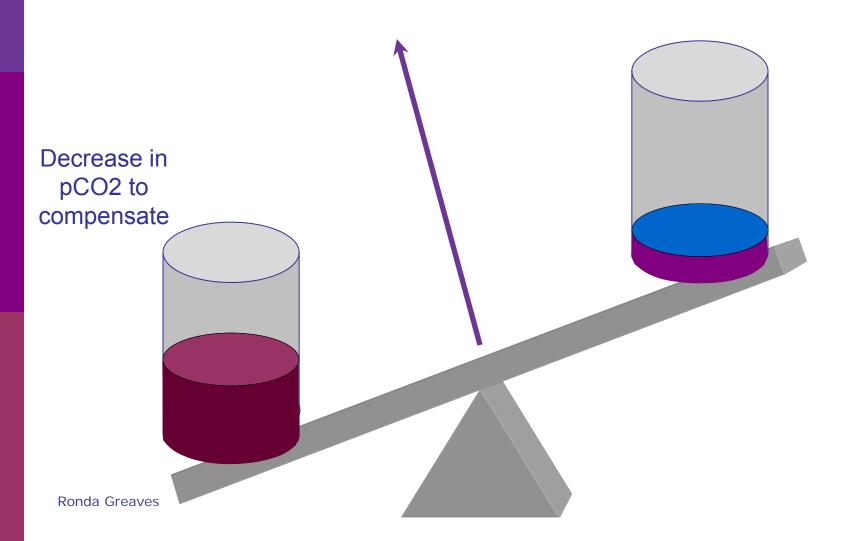
pDecreased H+ excretion

n e.g. renal failure, renal tubular acidosis


pLoss of bicarbonate

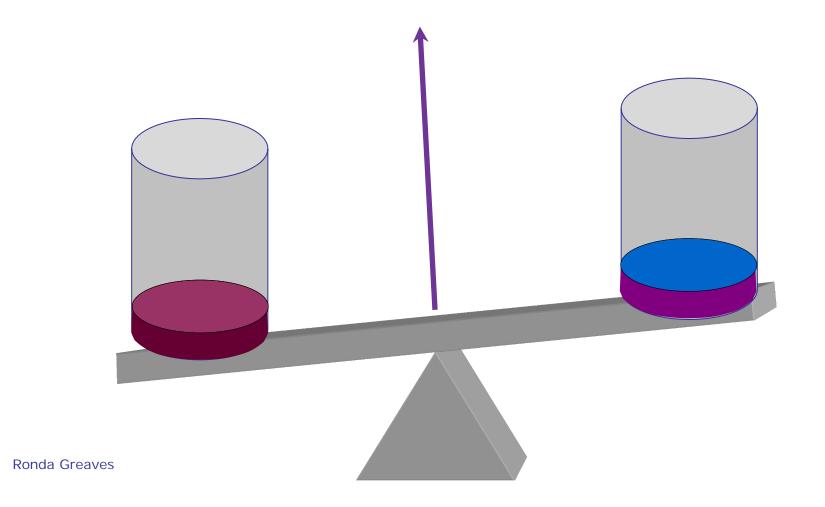
n e.g. diarrhoea, pancreatic fistula, renal tubular acidosis

Note: in newborns there is commonly a combined respiratory/metabolic acidosis


Metabolic Acidosis

Acidosis Alkalosis

Metabolic Acidosis


<u>Acidosis</u> Alkalosis

1° Metabolic Acidosis compensated by 2° Respiratory Alkalosis

Acidosis Alkalosis

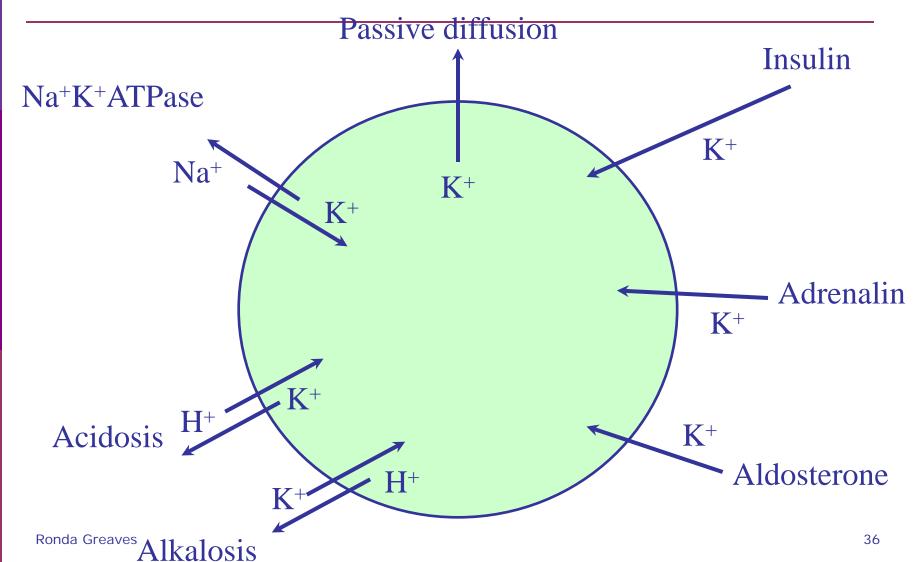
32

Case Study 6: 45 year old female with chronic renal failure

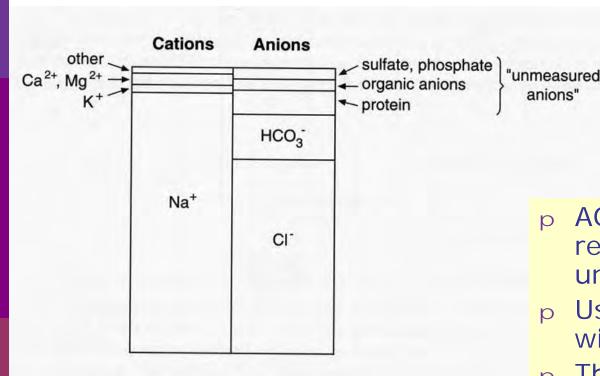
	рН	7.28		(7.35-7.45)
	H+	52	nmol/L	(35-45)
	PCO ₂	26	mm Hg	(35-45)
	PO_2	100	mm Hg	(80-110)
	HCO ₃	12	mmol/L	(23-33)
Plasma	Sodium	143	mmol/L	(137-145)
	Potassium	5.7	mmol/L	(3.1-4.2)
	Chloride	106	mmol/L	(98-106)
	Urea	75.0	mmol/L	(3.0-8.0)
	Creatinine	0.83	mmol/L	(0.05-0.12)

Once GFR falls below 20-30 ml/min (creat ~ 0.3-0.4 mmol/L), hyperkalaemia and metabolic acidosis develop. Below these values, other causes should be considered e.g. inc intake, aldosterone def

Case 7: A 4 year old child with diarrhoea and dehydration


Plasma	Na	145	mmol/L	(132-144)
	K	1.9	mmol/L	(3.2-4.8)
	CI	110	mmol/L	(98-108)
	HCO3	14	mmol/L	(23-33)
	Urea	3.2	mmol/L	(3.0-8.0)
	Creat	0.07	mmol/L	(0.06-0.12)
Urine	Na	<10	mmol/L	
	K	6	mmol/L	
	CI	< 5	mmol/L	

Diarrhoeal fluid contains large amounts of bicarbonate and potassium (metabolic acidosis). Extra-renal K loss with renal retention of Na and Cl

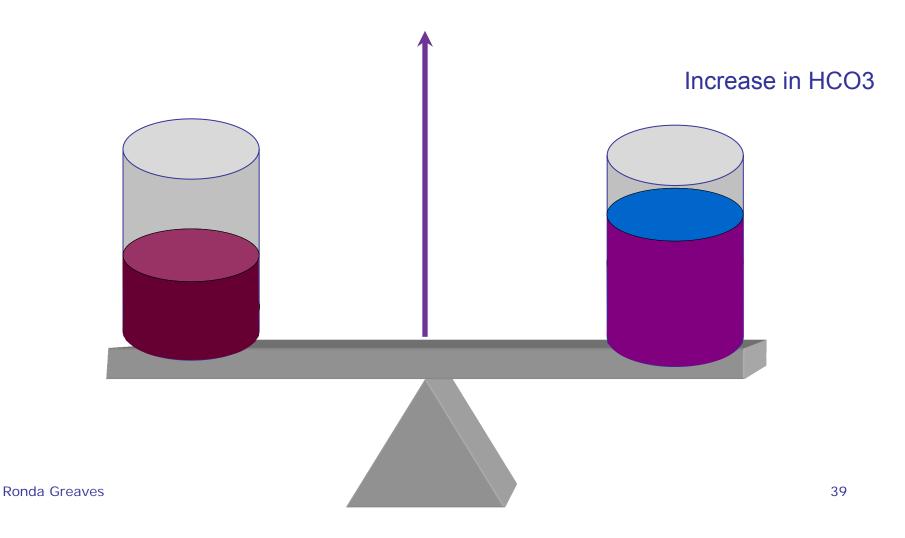

Case Study 8: DKA

рН	7.04	(7.35 - 7.45)	
pCO ₂	7	(35 - 45)	mmHg
pO_2	125	(80 - 100)	mmHg
HCO ₃	2	(21 - 28)	mmol/L
Sodium	141	(135-145)	mmol/L
Potassium	4.2	(3.5-5.0)	mmol/L
Chloride	106	(98-110)	mmol/L
Urea	10.9	(2.0 - 8.3)	mmol/L
Creatinine	0.09	(0.07 - 0.11)	mmol/L
Lactate	1.0	(0.2-1.8)	mmol/L
Ketones	POS		
Glucose	25.0	(3.6 - 7.7)	mmol/L

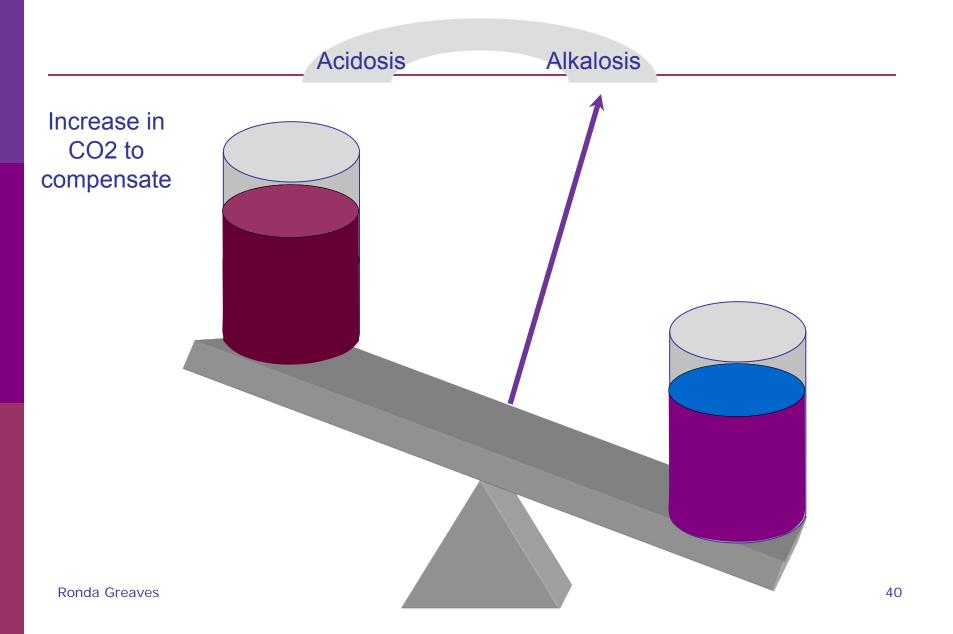
The cell wall

Anion Gap

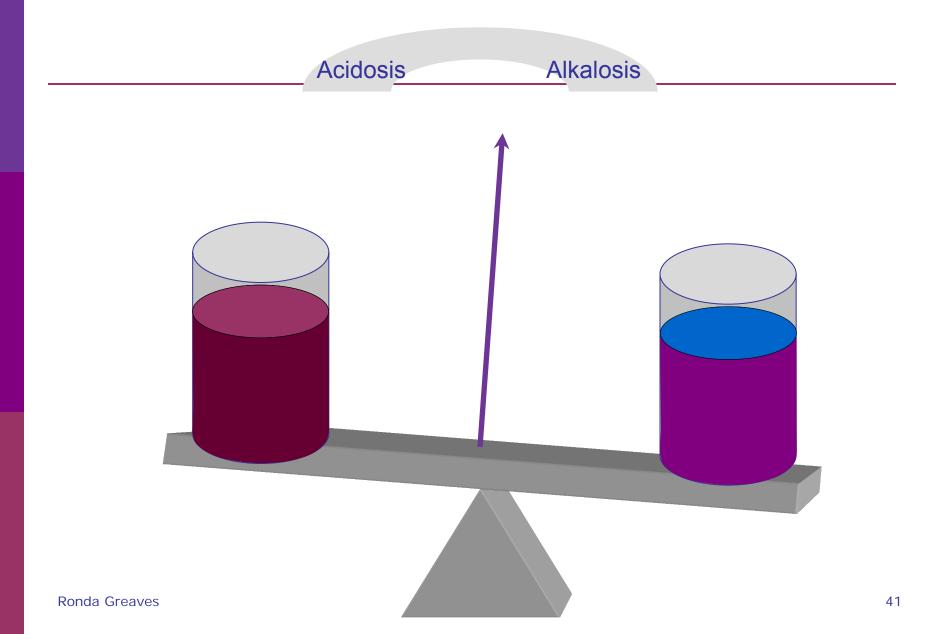
Anion Gap = Na + K - Cl - HCO3⁻ 37 = (141 + 4.2) - (106 + 2)


- p AG is a measure of the relative abundance of unmeasured anions.
- b Used to evaluate patients with metabolic acidosis.
- p The result should be between about 12 20 mmol/L of unmeasured anions.

Metabolic Alkalosis


- •Loss of H+
 - •e.g. vomiting, potassium deficiency, hyperaldosteronism, excess alkali administration

Metabolic Alkalosis


Acidosis Alkalosis

Metabolic Alkalosis

1° Metabolic Alkalosis compensated by 2° Respiratory Acidosis

Case Study 9: 6 week old boy presents to emergency department dehydrated and projectile vomiting

	initial	+1 d	+2 d	+3 d	RR
Na	133	132	139	138	135-145
K	3.3	4.6	6.2 H+	5.6	4.0-6.2
CI	67	82	102	107	98-110
рН	7.54	7.60	7.49	7.45	7.34-7.43
pCO ₂	60	36	36	40	32-45
ABIC	51.3	35.5	27.0	27.0	18.0-25.0
BE	>22.0	12.3	3.8	3.0	-4.0-+3.0
Urea	12.0	8.4	2.2	<1.0	1.7-6.7
Creat	0.07	0.04			0.01-0.03

Ronda Greaves 42

Pyloric Obstruction

Constriction to the outlet of the stomach.

- p Cause:
 - n Contraction of an ulcer
 - n Malignancy
 - n Congenital abnormality.
- p **Symptoms**:
 - n Vomiting (often projectile)
 - n Abdominal distension
 - n Loss of HCI
- p Biochemically:
 - n severe hypochloreamic metabolic alkalosis.
- Commonest form of metabolic alkalosis in newborns is associated with Pyloric Stenosis
 - Congenital malformation of pyloric sphincter
 - "Projectile" vomiting at 3-4 weeks of age
 - Hypochloraemic metabolic alkalosis

Pyloric Stenosis

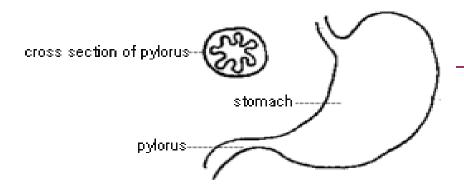


Diagram of normal stomach & pylorus. Note the cross-section showing normal pyloric opening.

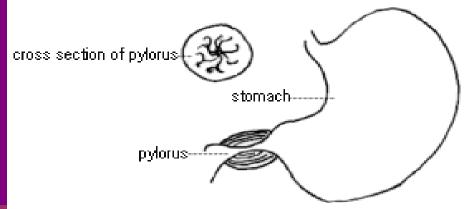


Diagram of stomach with pyloric stenosis.

Note the cross-section showing how the pyloric opening is very narrowed.

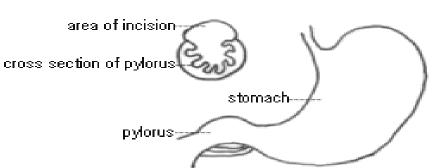


Diagram of stomach after repair of pyloric stenosis.

Note (in the cross-section) how an incision has been made in the muscle, enlarging the pylorus and relieving the obstruction.

44

Ronda Greaves

Diagnosis of Pyloric Stenosis

- p Clinical Examination
- P Radiology –Ultrasound &/or X-ray
- p Laboratory Blood gases and EUC's

Barium meal x-ray

Here is a very abnormal X-ray, showing a massively dilated, air-filled stomach, with very little bowel gas elsewhere. Suggests a high-grade gastric outlet obstruction.

Ronda Greaves

Mixed Disturbances

Case Study 10: Salicylate overdose - A 78 year old woman was

admitted comatose after her daughter complained that her conscious state had deteriorated over the last few hours. 2 empty bottles of Red Flower Oil were found by her bedside. On examination, she was found to be tachypnoeic with a respiratory rate of 55.

рН	7.50	(7.35 - 7.45)	
pCO ₂	17	(35 - 45)	mmHg
pO_2	103	(80 - 100)	mmHg
HCO ₃	13	(21 - 28)	mmol/L
Sodium	152	(135-145)	mmol/L
Potassium	3.5	(3.5-5.0)	mmol/L
Chloride	118	(98 - 110)	mmol/L
Creatinine	0.12	(0.07 - 0.13)	mmol/L
Urea	13.0	(2.0 - 8.5)	mmol/L

Metabolic acidosis + Respiratory alkalosis

Golden rules for interpretation

- 1. Follow the CLSI guidelines for collection and handling of samples
- 2. The patient's clinical history is the most important factor in determining the nature of the acid base disturbance.
- 3. Always start with pH to interpret blood gases i.e. acidosis or alkalosis
- 4. Only then look at the pCO_2 and bicarbonate i.e. respiratory or metabolic
- 5. Has compensation occurred?